Useful formulas for BECE candidates to note. Please Note: We do not GIVE MARKS for formulas stated, but a solution with A WRONG formula will LOSE VITAL marks.

- 1. Number of subsets of a given set $= 2^n$, where n is number of elements in the set
- 2. $A \cap B$ = elements in both sets A and B.
- 3. AUB = Collection of elements in sets A and B without repeating common elements.
- 4. $(AUB)^1$ = Elements in the Universal set which are not in AUB. Note in a Venn diagram, these elements are always outside the two intersecting circles.
- 5. Note the use of BODMAS: Brackets, of, division, multiplication, addition and subtraction.

6.
$$a^m \times a^n = a^{m+n}$$
. E.g. $5^6 \times 5^4 = 5^{6+4} = 5^{10}$.

7.
$$a^m \div a^n = a^{m-n}$$
. E.g $\frac{5^6}{5^4} = 5^6 \div 5^4 = 5^{6-4} = 5^2$.

8.
$$(a+b)(c+d) = a(c+d) + b(c+d)$$

9.
$$x^2 - y^2 = (x - y)(x + y)$$

- 10. To convert a number from base ten to other base, use the table method.
- 11. To convert a number from a non- decimal base to another non-decimal base. Convert the first non-decimal base to base ten, then convert the base ten to the desired base. E.g Convert1101₂ to base 5.

12. Profit =
$$S.p - C.p$$

13. Loss =
$$C.p - S.p$$

14. Profit percent(%) =
$$\frac{Profit}{C.p} \times 100$$

15. Loss % =
$$\frac{Loss}{C.p} \times 100$$

16. Finding C.p given S.p and Profit percent : C.p =
$$\frac{100}{100+P\%} \times S.p$$

17. Finding S.p given C.p and Profit percent : S.p =
$$\frac{100+profit\%}{100} \times C.p$$

18. Finding C.p given S.p and LOSS%: C.p =
$$\frac{100}{100-loss\%} \times S.p$$

19. Finding S.p given C.p and LOSS%: S.p =
$$=\frac{100-loss\%}{100} \times C.p$$

Embassy Mathematics formula book.

DISCOUNT

20. New price = Marked price - Discount

Or New price =
$$\frac{100-Discount\%}{100} \times marked price$$
.

21. Marked price = New price + discount

Or Marked price =
$$\frac{100}{100-Discount\%} \times new price$$

22. Discount = marked price – New price.

Or Discount/ amount saved =
$$\frac{Discount\%}{100} \times marked \ price$$

COMMISSION

- 23. Commission = Commission rate x total sales
- 24. Total earnings = basic salary + Commission

INTEREST

- 25. Interest(Simple interest) = $\frac{Principal \times rate \times Time(should\ be\ in\ years)}{100}$
- 26. Total amount = Principal + interest
- 27. Monthly installment = $\frac{Amount\ to\ be\ paid(P+I)}{Total\ number\ of\ months}$

VALUE ADDED TAX(VAT)

28. VAT =
$$\frac{vat\ rate}{100}$$
 × BASIC cost

29. VAT = $\frac{VAT\ rate}{100+VAT\ rate}$ × VAT inclusive cost. This formula is used when Vat inclusive cost is given. These formulas also apply to NHISL. Just replace VAT with NHISL.

30.
$$a: b = \frac{a}{b}$$
, also : $a: b = c: d \Rightarrow \frac{a}{b} = \frac{c}{d}$

- 31. Scale = Map distance : Actual distance , Scale is mostly in the form: 1:n
- 32. Map distance = $\frac{Actual\ distance}{n}$
- 33. Actual distance = $n \times map$ distance.

Embassy Mathematics formula book.

$$34. Average \ speed = \frac{\textit{Total distance}}{\textit{time taken}}$$

35. Distance = Average speed x time taken

36. Time taken =
$$\frac{Distance}{average speed}$$

- 37. Tax free income = sum of all non-taxable allowances
- 38. Taxable income = Salary Total tax free
- 39. Tax = rate of tax \times amount to be taxed.
- 40. Net income (take home pay) = salary total deductions

Note: Deductions include but not limited to: tax, Social security, loans, dues.

41.

From the diagram: An exterior angle is equal to the sum of the two opposite interior angles.

a=c+d

e = b + c

f = b+d

42.

Corresponding angles

k=q, n=s, m=r, p=t

Alternate angles

n=r, p=q

Co- interior angles (adds up to 180°)

$$n+q = 180^0$$

$$p+r = 180^0$$

 $k+m+n+p = 360^{\circ}$, angles around a point.

- 43. Area of square = l^2 , perimeter of square = 4l
- 44. Area of rectangle = $l \times b$, perimeter of rectangle = 2(l + b)
- 45. Area of parallelogram = Length of base x perpendicular height

Embassy Mathematics formula book.

Perimeter of parallelogram = $2 \times 1 = 2 \times 1 =$

- 46. Area of trapezium = $\frac{1}{2}$ ×(sum of parallel sides) x height, Perimeter of trapezium = sum of all 4 sides.
- 47. Area of rhombus = $\frac{1}{2}$ × product of diagonals, perimeter of rhombus = 4l
- 48. Area of kite $=\frac{1}{2} \times$ product of diagonals, Perimeter of kite = Sum of the 4 sides.
- 49. Area of triangle = $\frac{1}{2}$ × base x height, Perimeter of triangle = sum of three sides
- 50. Circumference of circle = πd or $2\pi r$
- 51. Area of circle = πr^2 , area of **semi**-circle = $\frac{1}{2}\pi r^2$, area of **quadrant** = $\frac{1}{4}\pi r^2$
- 52. Length of arc of a circle = $\frac{\theta}{360^{\circ}} \times 2\pi r$
- 53. Area of sector = $\frac{\theta}{360^{\circ}} \times \pi r^2$
- 54. Perimeter of sector = $2r + \frac{\theta}{360^{\circ}} \times 2\pi r$
- 55. Total surface area of a cylinder = $2\pi r(r + h)$
- 56. Total surface area of a cylinder with one end open or one end closed = $\pi r(r + h)$
- 57. Curved surface area of a cylinder = $2\pi rh$
- 58. Volume of cylinder = $\pi r^2 h$
- 59. Area of cuboid/rectangular box or tank = 2[lb + lh + bh]
- 60. Volume of cuboid = $l \times b \times h$
- 61. Total surface area of a cone = $\pi r(r + l)$. Note: l = slant height.
- 62. Curved surface area of a cone = $\pi r l$
- 63. Volume of cone = $\frac{1}{3}\pi r^2 h$
- 64. Volume of Pyramid = $=\frac{1}{3} \times$ base area x height
- 65. Area of a sphere = $4\pi r^2$

Embassy Mathematics formula book.

66. Volume of sphere =
$$\frac{4}{3}\pi r^3$$

68. Volume of prism = area of cross section
$$x$$
 length

69.
$$p+q=q+p$$
 \rightarrow Commutative property

70.
$$p+(q+r) = (p+q) + r \rightarrow Associative property$$

71.
$$p(q+r) = pq + pr \rightarrow Distributive property$$

72.
$$y = mx + c$$
 E.g $y = 5x + 6$. Gradient = 5. \checkmark y- intercept Gradient

73. Gradient =
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

74. length of a line joining two points = Distance between two points =
$$\sqrt{(x_2 - x_1)^2 - (y_2 - y_1)^2}$$

75. Equation of a line formula:
$$y - y_1 = m(x - x_1)$$
, where m = gradient.

76. Back bearing: If the bearing of Zorko from Bolga is θ , then the reverse or the bearing of Bolga from Zorko is

a)
$$\theta + 180^{\circ}$$
 , if $\theta < 180^{\circ}$

b)
$$\theta - 180^{\circ}$$
 if $\theta > 180^{\circ}$. Note: θ is the angle given in the question.

77.
$$\binom{p}{q} + \binom{r}{s} = \binom{p+r}{q+s}$$

78. Probability of an event=
$$\frac{Number\ of\ ways\ event\ can\ occur}{total\ number\ of\ possible\ outcomes}$$

a) Sample space of tossing a coin once
$$= 2^1 = 2 = \{ H, T \}$$

b) Sample space of tossing a coin twice
$$= 2^2 = 4 = \{ HH, HT, TH, TT \}$$

c) Sample space of tossing a coin thrice
$$= 2^3 = 8 =$$

	НН	HT	TH	TT
Н	ННН	HHT	HTH	HTT
T	THH	THT	TTH	TTT

- d) Sample space of tossing a ludu die once = $6^1 = 6 = \{1, 2, 3, 4, 5, 6\}$
- e) Sample space of tossing a die twice = $6^2 = 36 =$

	1	2	3	4	5	6
1	1,1	1,2	1,3	1,4	1,5	1,6
2	2,1	2,2	2,3	2,4	2,5	2,6
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	4,2	4,3	4,4	4,5	4,6
5	5,1	5,2	5,3	5,4	5,5	5,6
6	6,1	6,2	6,3	6,4	6,5	6,6

f) Sample space of tossing a coin and a die = 2x6 = 12

	1	2	3	4	5	6
Н	H,1	H,2	Н,3	H,4	H,5	H,6
T	T,1	T,2	T,3	T,4	T,5	T,6

79. Mode = most occurring number **or** number with the highest frequency in the case of a frequency table.

Median = Middle number after the data is arranged in ascending order. Note how to find median in a frequency table.

- 80. Mean $=\frac{\sum x}{n}$, without a frequency table or **Mean** $=\frac{\sum fx}{\sum f}$, finding mean from a frequency table
- 81. Reflection in x- axis or the line y=0: $(x,y) \rightarrow (x,-y)$
- 82. Reflection in the y-axis or x = 0: $(x,y) \rightarrow (-x,y)$
- 83. Rotation through 90° clockwise about the origin. $(x,y) \rightarrow (y,-x)$
- 84. Rotation via 90^0 anticlockwise about the origin: $(x, y) \rightarrow (-y, x)$
- 85. Rotation via 180° about the origin (clockwise or anticlockwise): $(x, y) \rightarrow (-x, y)$
- 86. Rotation via 270° clockwise about the origin: $(x, y) \rightarrow (-y, x)$
- 87. Rotation via 270° anticlockwise about the origin: $((x, y) \rightarrow (y, -x))$

- 88. Translation: Image = point +vector. Remember to write image in row form but not as column form.
- 89.Enlargement with scale factor k: $(x, y) \rightarrow (kx, ky)$.
- 90. Sum of interior angle of a polygon = $(n-2) \times 180^{0}$
- 91. Interior angle of a regular polygon = $\frac{(n-2)\times 180^{0}}{n}$
- 92. Exterior angle of a regular polygon = $\frac{360^{\circ}}{n}$
- 93. Scale factor of an enlargement or reduction = $\frac{image\ length}{Corresponding\ object\ length}$

94.
$$k^2 = \frac{area\ of\ enlarged\ figure}{area\ of\ original\ figure}$$

95.
$$k^3 = \frac{\text{volume of enlarged figure}}{\text{volume of original figure}}$$

96. Pythagoras theorem:

a
$$C$$

$$C^2 = a^2 + b^2$$

97. Pythagorean triples: 3 set of numbers which obey the Pythagoras theorem

98. Trigonometric ratios: applies to only right angle triangle.

Embassy Mathematics formula book.

Using the shortcut: SOHCAHTOA

$$Sin\theta = \frac{Opposite}{hypotenuse} = \frac{a}{c}$$

$$Cos\theta = \frac{adjacent}{hypotenuse} = \frac{b}{c}$$

$$Tan\theta = \frac{opposite}{adjacent} = \frac{a}{b}$$

99. Net of solid figures.

